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This article considers robust model predictive control (MPC) schemes for linear parameter varying (LPV) systems
in which the time-varying parameter is assumed to be measured online and exploited for feedback. A closed-loop
MPC with a parameter-dependent control law is proposed first. The parameter-dependent control law reduces
conservativeness of the existing results with a static control law at the cost of higher computational burden.
Furthermore, an MPC scheme with prediction horizon ‘1’ is proposed to deal with the case of asymmetric
constraints. Both approaches guarantee recursive feasibility and closed-loop stability if the considered
optimisation problem is feasible at the initial time instant.

Keywords: model predictive control; linear parameter varying systems; prediction horizon ‘1’;
convex optimisation problem

1. Introduction

Model predictive control (MPC) or receding horizon
control is a class of optimisation-based control
methods in which a control sequence is determined
by optimising a finite horizon cost at each sampling
instant, based on an explicit process model and state
measurements. The first control action of the optimal
sequence is applied to the plant. At the next sampling
instant, the optimisation problem is solved again with
new measurements, and the control input is updated.
Due to its ability to handle constraints on inputs and
states, the method has received much interest in both
academic community and industrial society over the
last 30 years (see, e.g. Mayne, Rawlings, Rao, and
Scokaert 2000; Qin and Badgwell 2003).

Linear parameter varying (LPV) systems are linear
systems whose dynamics depend on time-varying
parameters, which take their values in pre-specified
sets. Usually, it is assumed that the parameters can be
measured. The analysis and synthesis of LPV systems
play an important role in control theory and application
since both nonlinear systems and linear systems with
model uncertainties can be dealt within the framework
of LPV systems (Lim 1999; Scherer 2001). Predictive
control of linear uncertain systems has been proposed
based on the concept of ellipsoidal invariant sets
(Kothare, Balakrishnan, and Morari 1996). A state-
feedback control law is designed online whichminimises
an upper bound on the ‘worst-case’ infinite horizon

objective function, while at the same time keeping the
system state inside an invariant feasible set. The
approach (Kothare et al. 1996) is a suitable choice as
MPC controllers for LPV systems since they robustly
stabilise an LPV system for all possible parameter
variations. However, it has not explicitly been devel-
oped for LPV systems and therefore suffer from rather

conservative linear matrix inequality (LMI) conditions
that have to be satisfied. Many results in the literature
represent extensions of Kothare et al. (1996), for
example, schemes with enlarged feasible region and
reduced computational burden have been developed.
Using parameter-dependent Lyapunov functions,
(Cuzzola, Geromel, and Morari 2002; Lee and Won
2006; Wada, Saito, and Saeki 2006) propose procedures
which do not require the quadratic stabilisability of the

given system. An improved approach is proposed in
Kouvaritakis, Rossiter, and Schuurmans 2000 which
deploys a fixed state-feedback law with perturbations.
The algorithm requires a modest amount of online
computation and introduces extra degree of freedom to
enlarge the volume of the relevant invariant set. The
controllers suggested in Lu and Arkun (2000) and Park
and Jeong (2004) are restricted to LPV systems with
bounded rates of parameter variation. Those
approaches are not applicable to the case considered

in this article where we assume that the parameters may
vary arbitrarily within a given set. The approach
presented in Lu and Arkun (2000) assumes the
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parameter to be measurable in real-time. This knowl-

edge on the parameter allows to obtain in the first step

an exact prediction of the future system behaviour and

therefore reduced conservatism. In theMPC controllers

proposed in Lee and Won (2006) and Lee, Park, Ji, and

Won (2007), the control law is independent of the

system parameter. Similar to Kothare et al. (1996),

those approaches robustly stabilise the considered LPV

system. Thus, if the parameter is measurable, this

knowledge cannot be exploited. We will show in this

article that the incorporation of the parameter measure-

ment in the control law may reduce conservatism and

improve the controller performance. A solution invol-

ving the parameter measurement in the controller

design is suggested in Casavola, Famulare, and

Franzé (2002). However, this approach relies on

conservative LMI conditions. As will be shown, those

conditions can be relaxed using the results presented in

Gao (2006) and Yu, Chen, Böhm, and Allgöwer (2009).

Robust receding horizon control schemes are proposed

in Park, Lee, and Kwon (1999) and Ding, Xi, and Li

(2004) which are based on the minimisation of the

worst-case stage cost with a finite terminal penalty

function. However, it should be noted that only

symmetric box constraints are considered in the

aforementioned works which restrict the potential

application of the proposed schemes.
In this article, we discuss MPC schemes for LPV

systems with output constraints. First, we propose a

closed-loop MPC scheme for LPV systems with a

parameter-dependent control law. Compared with the

result proposed in Kothare et al. (1996), the parameter-

dependent control law reduces the conservativeness of

the optimisation problem. Then, we propose an MPC

scheme with prediction horizon ‘1’ for LPV systems

with possibly asymmetric constraints. If the system has

symmetric box constraints, the optimisation problem

of MPC with prediction horizon ‘1’ can be formulated

as a semi-definite programme involving LMIs.

Recursive feasibility of the optimisation problems

and stability of the closed-loop system are guaranteed

for both the proposed schemes. We highlight that the

LMIs developed in the closed-loop MPC with a

parameter-dependent control law can also be used to

solve the terminal control law of MPC with prediction

horizon ‘1’ since the fictitious control law is not applied

to the considered systems at all.
This article is organised as follows. Section 2

introduces the class of LPV systems and presents

the considered setup. Section 3 discusses a closed-

loop MPC of LPV systems with symmetric box

constraints. Section 4 proposes MPC with prediction

horizon ‘1’ for LPV systems with possibly asymmetric

constraints. Numerical examples to illustrate the

effectiveness of the proposed algorithm are given in

Section 5.

Notation: The following notation is used throughout

this article. Let R and Z denote the field of real

number, the set of integer numbers, R
n denotes the

n-dimensional Euclidean space. The notations Z½c1,c2�

and Z½c1,c2Þ denote the sets {k2Z j c1� k� c2} and

{k2Z j c1� k< c2}. Suppose that M2R
n�n, MT

denotes the transpose of M and ��ðMÞ denotes the

largest singular value of matrix M. Im denotes the

m�m identity matrix, and � denotes the correspond-

ing symmetric block in symmetric matrices.

2. LPV systems

Consider discrete-time LPV systems of the form

xkþ1 ¼ Að�kÞxk þ Bð�kÞuk, ð1aÞ

yk ¼ Cð�kÞxk þDð�kÞuk, ð1bÞ

subject to the constraints

yk 2 H, ð2Þ

where xk 2 R
nx denotes the state, uk 2 R

nu the control

input and yk 2 R
ny the performance output. The

output yk cannot necessarily be measured. The

compact set H contains the origin in its interior.

If the constraints are in a symmetric box, we can write

them in an element-wise fashion as

�ym,max � ym,k � ym,max, m 2 Z½1,ny�, ð3Þ

where ymax :¼ ½ y1,max, . . . , yny,max�
T is a given constant

vector of compatible size.
The system matrices Að�kÞ 2 R

nx�nx , Bð�kÞ 2 R
nx�nu ,

Cð�kÞ 2 R
ny�nx and Dð�kÞ 2 R

ny�nu are assumed to

depend linearly on the parameter vector �k :¼ [�1,k,
�2,k, . . . , �N,k]

T
2R

N, which belongs to a convex poly-

tope P defined by

P :¼ �k 2 R
N

���� XN
j¼1

�j,k ¼ 1, �j,k � 0

( )
: ð4Þ

N is the number of matrix vertices. Clearly, as �k varies
inside the convex polytope P, the matrices of the

system (1) vary inside a corresponding polytope �,

which is defined by the convex hull of N local matrix

vertices [Ai,Bi,Ci,Di], i2Z[1,N],

� :¼ Co
A1 B1

C1 D1

� �
,

A2 B2

C2 D2

� �
, . . . ,

AN BN

CN DN

� �� �
:
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Therefore, we can write the matrices of the system (1) as

Að�kÞ ¼
XN
j¼1

�j,kAj, Bð�kÞ ¼
XN
j¼1

�j,kBj,

Cð�kÞ ¼
XN
j¼1

�j,kCj, Dð�kÞ ¼
XN
j¼1

�j,kDj:

ð5Þ

2.1 Control task and problem setup

The control task is to stabilise the origin of the
system (1) with anMPC law such that the constraints (2)
are satisfied. To distinguish actual state and predicted
trajectories, in what follows the index kþ i/k denotes
future values at time kþ i predicted at time k, i2Z[0,1).

In this article, we first consider an infinite horizon
optimisation problem.

Problem 1: Let Q 2 R
nx�nx and R 2 R

nu�nu be positive
definite weightingmatrices. Consider the system (1)–(2).
For a given initial state xk, find a control law ukþi/k¼
�(xkþi/k) such that the infinite horizon cost functional

J1=kðxkÞ ¼ max
�kþi=k2P

X1
i¼0

xTkþi=kQxkþi=k þ uTkþi=kRukþi=k

n o
ð6Þ

is minimised with respect to the time-varying param-
eter �kþi/k and the output constraints (2) at each
sampling instant k, based on a prediction of the system
behaviour into the future, and xk/k :¼ xk.

Assume that no mismatch exists between the model
and the plant, and that both the parameter vector �k
and the state xk are measured in real-time. Thus, at
every sampling time k the current system matrices

Að�k=kÞ Bð�k=kÞ

Cð�k=kÞ Dð�k=kÞ

� �

are known exactly but the future system matrices

Að�kþi=kÞ Bð�kþi=kÞ

Cð�kþi=kÞ Dð�kþi=kÞ

� �

are uncertain, since we cannot know exactly the future
behaviour of the system parameter �kþi/k, i2Z[1,1).
Notice that they vary inside the polytope �. Therefore,
in the cost functional (6) the worst case over all
possible future parameters has to be considered.

3. Closed-loop MPC with a parameter-dependent

control law for LPV systems

In this section, we propose a new MPC law for the
system (1) subject to the symmetric box constraints (3)

by using a parameter-dependent state feedback control
law, which is obtained via the solution of a convex
optimisation problem. The obtained LMI conditions
provide more degrees of freedom in the controller
design compared with the scheme which has a static
feedback control law.

Consider a linear parameter-dependent state feed-
back control law

uk ¼ Kð�kÞxk, ð7Þ

which is updated at each sampling instant via the
minimisation of an upper bound on the cost func-
tional (6). Suppose that Kj 2 R

nu�nx is a time-invariant
feedback gain associated with the j-th vertex system.
A suitable parameter-dependent feedback law for the
whole LPV system is obtained via the weighted average
of the control laws designed for each vertex

Kð�kÞ ¼
XN
j¼1

�j,kKj: ð8Þ

For the system (1), using the controller (7)–(8), we
obtain the closed-loop representation

xkþ1 ¼ Aclð�kÞxk

zk ¼ Cclð�kÞxk,
ð9Þ

where

Aclð�kÞ ¼
XN
i¼1

XN
j¼1

�i,k�j,kðAi þ BiKjÞ and

Cclð�kÞ ¼
XN
i¼1

XN
j¼1

�i,k�j,kðCi þDiKjÞ:

3.1 Upper bound on the cost functional

The solution to the following optimisation problem
provides an upper bound of the cost functional (6) at
time instant k, as will be shown in Theorem 1.

Problem 2: At time k, measure the state xk and the
parameter vector �k, consider the optimisation problem

minimise
�k,Xk,Y1,k,Y2,k,...,YN,k

�k ð10aÞ

subject to

1 xTk
xk Xk

� �
� 0,

ð10bÞ

XN
i¼1

XN
j¼1

�i,kþvjk�j,kþvjkLij � 0, v 2 Z½0,1Þ, ð10cÞ

XN
i¼1

XN
j¼1

�i,kþvjk�j,kþvjkFij,m � 0, m 2 Z½1,ny�, ð10dÞ

International Journal of Control 673
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with the matrices

Lij ¼

Xk � � �

AiXk þ BiYj,k Xk � �

Q
1
2Xk 0 �kI �

R
1
2Yj,k 0 0 �kI

2
6664

3
7775,

Fij,m ¼
y2m,max eTmðCiXk þDiYj,kÞ

� Xk

� �
,

and em :¼ ½0, . . . , 0, 1, 0, . . . , 0�T 2 R
ny with its m-th

element ‘1’ and the other elements ‘0’.

As discussed in Section 2, the parameter vector �k/k
is known, and the future vector �kþi/k, i2Z[1,1), varies

inside a convex polytope P.

Remark 3.1: Note that for simplicity of notation we

have skipped the index k in the matrices Lij and Fij,m.

It is clear from the definition of those matrices that

they change with k since they depend on Xk and Yj,k.

The following theorem derives conditions to obtain

an upper bound on the cost functional (6) using the

system description (9) and Problem 2.

Theorem 1: Suppose that there exist a symmetric,

positive definite matrix Xk 2 R
nx�nx , matrices

Yj,k 2 R
nu�nx , j2Z[0,N], and a constant �k> 0 such that

Problem 2 at time instant k has a feasible solution for all

�kþvjk2P, v2Z[1,1), where xk is the measured system

state at the sampling instant k. Then, with Pk ¼ �kX
�1
k ,

Kj,k ¼ Yj,kX
�1
k , j2Z[1,N], and the parameter-dependent

control law

ukþvjk ¼ Kð�kþvjkÞxkþvjk, ð11Þ

where Kð�kþvjkÞ ¼
PN

j¼1 �j,kþvjkKj,k, the following holds:

(1) The predicted states xkþvjk with xkjk¼ xk con-

verge to the origin as v!1.
(2) The expression Vk ¼ xTkPkxk is minimised and

represents an upper bound on the cost func-

tional (6) at the sampling instant k.
(3) The constraints (3) are satisfied for all v2Z[0,1).

Remark 3.2: The solution to Problem 2 is a feasible

solution to Problem 1, and the term �k of Equation (10a)
is an upper bound on the cost functional (6).

3.2 Optimisation problem and properties

Theorem 1 gives conditions for the minimisation of an

upper bound on the infinite horizon cost functional (6).

However, the matrix inequalities (10c) and (10d)

depend on the unknown future parameter �kþvjk for

all v2Z[1,1). This makes it impossible to find a

solution to Problem 2. To deal with the difficulty, we

introduce the following lemma.

Lemma 1 (Kim and Lee 2000): If there exist matrices

�ij ¼ �T
ji , i, j2Z[1,N], such that the LMIs

�ii � �ii, ð12aÞ

�ij þ �ji � �ij þ�T
ij , ð12bÞ

½�ij�N�N � 0, j5 i, ð12cÞ

are satisfied, where

½�ij�N�N ¼

�11 � � � �1N

..

. . .
. ..

.

�N1 � � � �NN

2
64

3
75, ð13Þ

then, with �i� 0 and
PN

i¼1 �i ¼ 1, the parameter-

dependent matrix inequalities

XN
i¼1

XN
j¼1

�i�j�ij � 0 ð14Þ

are satisfied.

We observe that Lemma 1 reformulates the

parameter-dependent matrix inequality (14) as a set

of LMI conditions (12). In virtue of this result, we

introduce an infinite horizon MPC scheme for LPV

systems subject to constraints by applying Lemma 1 to

Equations (10c)–(10d).
We consider the following optimisation problem

which can be treated as a convex optimisation problem

with respect to LMI constraints.

Problem 3: At time k, measure the state xk and the

parameter vector �k, and solve the optimisation

problem

minimise
�k,Xk,Y1,k,Y2,k, ,YN,k,Tij,Sij

�k ð15aÞ

subject to

1 xTk
xk Xk

� �
� 0,

ð15bÞ

Lii � Tii, ð15cÞ

Lij þ Lji � Tij þ TT
ij , ð15dÞ

½Tij�N�N � 0, i 2 Z½1,N�, j5 i, ð15eÞ

Fii,m � Sii,m, ð15fÞ
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Fij,m þ Fji,m � Sij,m þ ST
ij,m, ð15gÞ

Sij,m

� �
N�N
� 0, i 2 Z½1,N�, j5 i ð15hÞ

where Lij and Fij,m are as defined in Problem 2.

The MPC control law is defined by the following

algorithm.

Algorithm 1:

Step 1: At time k, measure the state xk and the

parameter vector �k, and solve Problem 3.

Step 2: Apply the control input

uk :¼ Kð�kjkÞxk ð16Þ

to the system (1), where K(�kjk) is the first part of the

optimal feedback sequence Kð�kþvjkÞ ¼
PN

j¼1 �j,kþvjkKj,k,

Kj,k :¼ Yj,kX
�1
k , for all j2Z[1,N] and v2Z[0,1).

Step 3: Set k :¼ kþ 1 and go to Step 1.

Theorem 2: Consider the LPV system (1) subject to

the constraints (3) and the cost functional (6). Problem 3,

which is solved repeatedly at each sampling instant k, has

the following properties:

(1) Problem 3 is convex. Furthermore, it is feasible

at all future sampling instant if it is feasible at

the initial time instant.
(2) The solution to Problem 3 minimises the upper

bound Vk ¼ xTkPkxk on cost functional (6) at

each sampling instant k, with Pk ¼ �kX
�1
k .

(3) If Problem 3 is initially feasible, the control

law (16) asymptotically stabilises the origin of

system (1).
(4) The MPC control law (16) ensures that the

symmetric box constraints (3) are satisfied

for all k.

Remark 3.3: Algorithm 1 together with Problem 3

provides a closed-loop MPC scheme on Problem 1.

Similar to the scheme proposed in Kothare et al.

(1996), a feedback control law is adopted at each time

instant. However, the control law is parameter-

dependent rather than static.

Remark 3.4: It is worth pointing out that the

proposed MPC control law is less conservative than

those suggested in Kothare et al. (1996) and Casavola

et al. (2002). For example, one can see that the solution

to the optimisation problem in Kothare et al. (1996)

and Casavola et al. (2002) should satisfy the condition

Li1> 0 for all i2Z[1,N]. Thus, Problem 3 has a larger set

of feasible solutions compared with the optimisation

problems in either Casavola et al. (2002) or Kothare

et al. (1996).

In the following section, we propose an MPC

scheme for LPV systems subject to possibly asym-

metric constraints, which adopts the analogous frame-

work of a terminal control law, a terminal set and a

terminal penalty of quasi-infinite horizon MPC by

using already existing information.

4. MPC with prediction horizon ‘1’ for LPV systems

In this section, we propose an MPC scheme with

prediction horizon ‘1’ for LPV systems which has

possibly asymmetric constraints. Stability of the closed-

loop system and recursive feasibility of the related

optimisation problem can be guaranteed if the optimi-

sation problem is feasible at the initial time instant.

Furthermore, if the constraints are in a symmetric box,

the optimisation problem can be formulated as a convex

optimisation problem formulated via LMIs.

4.1 MPC of LPV systems with possibly asymmetric
constraints

We consider general constraints (2) in this subsection,

i.e. not necessarily symmetric box constraints. Given

�> 0, define X f as a neighbourhood of the origin

X f :¼ fx 2 R
nx jEðxÞ � �g: ð17Þ

X f is a level set of the positive definite function

E(x) :¼ xTPx, where P 2 R
nx�nx is a positive definite

matrix. Similar to quasi-infinite horizon nonlinear

MPC (Chen and Allgöwer 1998), the following

definition is needed to reformulate the infinite horizon

cost functional (6).

Definition 1: X f and E(x) are said to be the terminal

set and the terminal penalty function, respectively,

suppose that there exists a continuous local control law

u¼�(x) such that

B0 X f2X , where X is the projection of output space

H to the state space.
B1 yk2H for all xk2X f,
B2 E(x) satisfies the inequality

Eðxkþiþ1Þ � EðxkþiÞ þ xTkþiQxkþi

þ �ðxkþiÞ
TR�ðxkþiÞ � 0, ð18Þ

for all �kþi2P and all xkþi2X f, i2Z[0,1).

According to Definition 1, X f has the following

properties:

(1) The origin is contained in the interior of X f,

since E(x)> 0 for all x2X fn{0},
(2) X f is closed and connected since E(x) is

continuous in x,

International Journal of Control 675
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(3) Since (18) holds, X f is a robust positive

invariant set for the ‘unknown’ parameter of

the LPV system (1) controlled by u¼�(x).

Remark 4.1: The terminal set in Chen and Allgöwer

(1998) is a neighbourhood of the equilibrium which

satisfies the constraints and is positive invariant. Here,

X f is ‘robust’ positive invariant for all admissible but

‘unknown’ parameters.

Lemma 2: Following Definition 1, the terminal set X f

and the terminal cost function E(x) are such that

Eðxkþ1=kÞ

� max
�kþi=k2P

X1
i¼1

xTkþi=kQxkþi=k þ �ðxkþi=kÞ
TR�ðxkþi=kÞ

n o
for all x2X f.

Using Lemma 2, we approximate the infinite

horizon cost functional as a one-step ahead functional

Jkðxk=kÞ :¼ xTk=kQxk=k þ uTk=kRuk=k þ xTkþ1=kPxkþ1=k,

ð19Þ

which is an upper bound of the cost functional

J1/k(xk/k). Therefore, Problem 1 for the current state

xk and the current parameter �k can be reformulated as

follows.

Problem 4: At time k, measure the state xk and the

parameter vector �k, and solve the optimisation

problem

minimise
uk=k

Jkðxk=kÞ

subject to

xkþ1=k ¼ Að�kÞxk=k þ Bð�kÞuk=k, xk=k ¼ xk,

yk=k ¼ Cð�kÞxk=k þDð�kÞuk=k,

yk=k 2 H,

xkþ1=k 2 X f,

where X f is the terminal set, xTkþ1=kPxkþ1=k is the

terminal penalty function, and Jk(xk/k) as in (19).

The MPC control law is defined as follows.

Algorithm 2

Step 1: At the sampling time k2Z[0,1), measure

the state xk and the parameter vector �k, and

solve Problem 4.

Step 2: Apply the control input

uk :¼ argmin
uk=k

Jkðxk=kÞ ð20Þ

to the system (1).

Step 3: Set k¼ kþ 1 and go to Step 1.

A free control action uk/k calculated online and a

fictitious control law �(�) calculated offline to deter-

mine P are needed in Problem 4, where uk/k is not

necessarily equal to �(xk). However, only the free

control action uk/k is actually applied to the system.

Remark 4.2: Comparing Problem 4 with Problem 3,

where a control law K(�k) is calculated online and

applied to the system, the free control action uk/k
provides a degree of freedom which allows to deal with

asymmetric constraints, and possibly leads to better

performance.

Remark 4.3: If H is a convex set, then Problem 4

is a convex optimisation problem (Boyd and

Vandenberghe 2004).

Remark 4.4: If not only the parameter but also its

rate of variation are available online, the prediction

horizon in (19) can be chosen as N¼ 2, i.e.

Jkðxk=kÞ :¼
X1
i¼0

xTkþi=kQxkþi=k þ uTkþi=kRukþi=k

n o

þ xTkþ2=kPxkþ2=k,

since xkþ2/k can also be calculated exactly at time k.

Remark 4.5: If the varying parameter �(�) is a

function of the state x(�) and the control u(�), we can

choose the prediction horizon N arbitrarily large. In

this case, �kþi/k can be determined by xkþj/k and ukþj/k,

for all j2Z[0,i].

According to the principle of moving horizon

strategy, Problem 4 can be solved repeatedly at each

time instant k based on the measurements xk and �k.
The following theorem investigates the properties of

the system (1) under the proposed MPC law.

Theorem 3: Suppose that

(a) for the LPV system (1), there exists a locally

asymptotically stabilising controller u¼�(x),
a continuously differentiable, positive definite

function E(x)¼xTPx that locally satisfies (18)

and a positive invariant set X f defined by (17),
(b) Problem 4 is feasible at the initial time k¼ 0.

Then,

(1) Problem 4 is feasible for all k2Z[0,1),
(2) the system (1) under MPC control law (20)

according to Algorithm 2 is robustly asymptoti-

cally stable within the region of attraction D,

where D is the set of all states for which

Problem 4 has a feasible solution.
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4.2 Terminal set and terminal penalty function

In order to specify Problem 4, the terminal set X f as
well as the terminal penalty function xTPx which is an
upper bound on the infinite horizon cost functional has
to be chosen a priori. In what follows, we state LMI
conditions which can be used to determine the terminal
set associated with a time-invariant or a parameter-
varying terminal control law, while the constraints are
in a symmetric box.

Remark 4.6: For LPV systems with asymmetric
constraints, to the author’s best knowledge, there is
no systematic way to get an ellipsoidal terminal set
except for choosing tighter symmetric box constraints
within the asymmetric bounds.

First we present an LMI scheme to obtain the
terminal set of LPV systems, which has a fixed terminal
control law. The original theorem was proposed by
Chen, O’Reilly, and Ballance (2003), and is about the
terminal set of nonlinear systems described by linear
difference inclusions.

Lemma 3 (Chen et al. 2003, Static terminal control
law): Suppose that the LPV system (1) is subject to
symmetric box constraints (3). If there exist a scalar
�> 0, a positive definite matrix X2Rnx�nx and a non-
quadratic matrix Y 2 Rny�nx such that

X � � �

AiXþ BiY X � �

X 0 �Q�1 �

Y 0 0 �R�1

2
6664

3
77754 0, ð21aÞ

y2m,max eTmðCiXþDiYÞ

� X

� �
� 0, m 2 Z½1,ny�, ð21bÞ

with i2Z[1,N], then the ellipsoid X f with P :¼ �X�1 and
E(x) :¼ xTPx can serve as a terminal set and a terminal
penalty function, respectively. The associated terminal
controller is �(x) :¼YX�1x.

The above lemma yields a parameter-independent
terminal control law. The following lemma shows that
a less conservative result is obtained by using a
parameter-dependent terminal control law.

Lemma 4 (Parameter-dependent terminal control
law): Suppose that the LPV system (1) is subject to
symmetric box constraints (3). If there exist a scalar
�> 0, a positive definite matrix X 2 Rnx�nx and matrices
Yj 2 Rny�nx , T ij and Mij, i, j2Z[1,N] such that (15c)–
(15h) are satisfied, then the ellipsoid X f with P :¼ �X�1

and the function E(x) :¼xTPx serve as a terminal region
and a terminal penalty function for LPV system,
respectively. The associated terminal controller is
�ðxÞ :¼

PN
j¼1 �jKjx with Kj¼YjX

�1.

Remark 4.7: In order to obtain the feasible region of
Problem 4 as large as possible, one can solve the offline
optimisation problem

maximise
�,X,Y

ðdetXÞ
1
nx , s:t: ð21Þ holds,

or

maximise
�,X,Y1,Y2,...,YN

ðdetXÞ
1
nx , s:t: ð15cÞ�ð15hÞ hold,

respectively, where �> 0 and X> 0, to get the fixed
terminal control law or the parameter-dependent
terminal control law. Both optimisation problems are
convex and can be solved by standard LMI solvers
(Boyd, El Ghaoui, Feron, and Balakishnan 1994).

4.3 MPC of LPV systems with symmetric
box constraints

In this subsection, we choose the matrix P as a new
online optimisation variable and convert Problem 4
into a convex optimisation problem with LMIs. In
other words, the terminal control law, the terminal set
and the terminal penalty function are determined
online as well.

Minimisation of xTk=kQxk=k þ uTk=kRuk=k þ xTkþ1=k�
Pxkþ1=k with P> 0 is equivalent to

minimise
�, uk=k,P

�,

subject to

xTk=kQxk=k þ uTk=kRuk=k þ xTkþ1=kPxkþ1=k � �,

with �> 0. By the Schur complement, this is
equivalent to

minimise
�, uk=k,X

�,

subject to

1 � � �

xk=k �Q�1 � �

uk=k 0 �R�1 �

Að�kÞxk=k þ Bð�kÞuk=k 0 0 X

2
6664

3
7775 � 0,

ð22Þ

with X :¼ �P�1 and �> 0. Due to xTkþ1=kPxkþ1=k � �,
which follows from (22), Problem 4 with parameter-
dependent terminal control law is formulated as
follows.

Problem 5: At time k, measure the state xk and solve
the optimisation problem

minimise
�, uk=k,X,Y1,Y2,...,YN

�,
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subject to

xkþ1=k ¼ Að�kÞxk=k þ Bð�kÞuk=k, xk=k ¼ xk,

yk=k ¼ Cð�kÞxk=k þDð�kÞuk=k,

� ym, max � ym,k=k � ym, max, 8m 2 Z½1,ny�

ð15cÞ�ð15hÞ, ð22Þ,

with �> 0 and X> 0.

The MPC control law is defined as follows.

Algorithm 3:

Step 1: At the sampling time k2Z[0,1), measure the

state xk and solve Problem 5.

Step 2: Apply the control input

uk :¼ uk=k ð23Þ

to the system (1), where uk/k is the feasible solution to

Problem 5.

Step 3: Set k¼ kþ 1 and go to Step 1.

Theorem 4: Assume that Problem 5 is feasible at the

initial time instant. Then, the MPC scheme according to

Algorithm 3 guarantees that

(1) Problem 5 is feasible for all k> 0,
(2) the symmetric box constraints (3) are satisfied

for all time instants,
(3) the MPC control law asymptotically stabilises

the LPV system (1).

Remark 4.8: If Y¼Y1¼ � � �¼YN, then Problem 5

with a parameter-dependent terminal control law will

degenerate into a problem with a fixed terminal control

law, which has been proposed in Lu and Arkun (2000

and Park et al. (1999). In this sense, the parameter-

dependent terminal control law here provides an extra

degree of freedom in Problem 5, which promises a

larger feasible region and a better performance,

however, at the cost of heavy computational burden.

5. Numerical example

5.1 Example 1

We consider the two-mass-spring system (Kothare

et al. 1996), as shown in Figure 1. The discrete time

state space equation, which is obtained from the

continuous time model using a first-order Euler

approximation with sample time of �¼ 0.1 s, is

x1,kþ1

x2,kþ1

x3,kþ1

x4,kþ1

2
66664

3
77775 ¼

1 0 0:1 0

0 1 0 0:1

�
0:1	k

m1

0:1	k

m1
1 0

0:1	k

m2
�
0:1	k

m2
0 1

2
66666664

3
77777775

x1,k

x2,k

x3,k

x4,k

2
66664

3
77775

þ

0

0
0:1

m1

0

2
666664

3
777775uk, ð24Þ

where m1 and m2 are the two masses and 	k is the
spring constant at the time instant k. The positions of
the masses are represented by the states x1,k and x2,k,
whereas x3,k and x4,k describe their velocities. In this
example, we choose masses m1¼ 1 and m2¼ 1, and
consider the output yk :¼x2,k� x1,k. The spring con-
stant is assumed to be a time-varying function

	k ¼ 0:5þ 50y2k:

Due to the physical limitation of the system, we assume
that an output constraint jy(k)j � 0.5 is imposed. Thus,
it can be verified that 	k2 [0.5, 13].

Introducing the parameters �1,k ¼ 1� 	k�0:5
12:5 and

�2,k¼ 1� �1,k, the system (24) can be written in the
form of (5), that is, the parameters �i,k, i¼ 1, 2, satisfy
condition (4) and the matrices Ai and Bi¼B, i2Z[1,2],
are as follows:

A1 ¼

1 0 0:1 0

0 1 0 0:1

�0:05 0:05 1 0

0:05 �0:05 0 1

2
6664

3
7775,

A2 ¼

1 0 0:1 0

0 1 0 0:1

�1:3 1:3 1 0

1:3 �1:3 0 1

2
6664

3
7775, B ¼

0

0

0:1

0

2
6664

3
7775:

The control objective is to steer the example
system (24) from an initial condition to the origin
while satisfying the constraints jukj � 1 and jy(k)j � 0.5
for all k. In the example, the matrices of the infinite
horizon cost functional (6) are chosen as Q¼ I2R

4�4

and R¼ 1. The MPC with prediction horizon ‘1’ of
LPV systems with symmetric box constraints proposed
in Section 4.2 is adopted. We compare our results with
the approaches suggested by Lu and Arkun (2000) and
Kothare et al. (1996), in order to illustrate the reduced
conservativeness and the improved performance.Figure 1. Coupled spring-mass system.
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Figures 2 and 3 show the obtained simulation
results for the closed-loop behaviour from the initial
state x0¼ [1 1 0 0]T. Compared with the approaches in
Kothare et al. (1996) and Lu and Arkun (2000), the
proposed MPC control law which solves Problem 5
online steers the state of the example system faster to
the origin. The behaviour of the states x1,k and x2,k
shows that the novel controller is able to react more
efficiently on the varying parameters �1,k and �2,k. This
results from the parameter-dependent feedback control
law and from the less conservative LMI conditions in
the optimisation problem. The reduced conservative-
ness of the parameter-dependent control law is also

illustrated well by the behaviour of J0k which represents

the minimised upper bound on the worst-case cost

functional. Figure 2 clearly shows that, with the

parameter-dependent control law a smaller upper

bound can be calculated at each sampling instant k.

Figure 3 shows that both the input and the output

constraints considered in this example are satisfied.

Note that in identifying the differences, we only display

the first few control inputs.

5.2 Example 2

Consider the time-varying discrete-time nonlinear

system

x1,kþ1 ¼ 0:5x21,k þ uk,

x2,kþ1 ¼ 0:5þ sin2ðkÞ=3
	 


x1,k þ x2,k þ uk,

with the asymmetric input constraint �1.0� uk� 0.5

and the state constraints �1� x1� 1 and �1� x2� 1.

The control objective is to steer the system from the

initial state to the equilibrium while satisfying the

constraints. It is possible to embed the nonlinear

Figure 3. Comparison of both the output and the input
constraints, MPC with prediction horizon ‘1’ for LPV system
(solid line) versus the controllers of Kothare et al. 1996
(dash-dot line) and Lu and Arkun 2000 (dashed line) for the
system (24) and setup, from the initial state x0¼ [1 1 0 0]T.

Figure 2. Comparison of the evolution of states and the
performance, MPC with prediction horizon ‘1’ for
LPV system (solid line) versus the controllers of Kothare
et al. (1996) (dash-dot line) and Lu and Arkun (2000) (dashed
line) for the system (24) and setup, from the initial state
x0¼ [1 1 0 0]T.
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system into the prescribed polytope (Boyd et al. 1994)

Co

(
1=2 0 1

1=2 1 1

� �
,

1=2 0 1

5=6 1 1

� �
,

�1=2 0 1

1=2 1 1

� �
,
�1=2 0 1

5=6 1 1

� �)
:

Thus, we can use the proposed MPC scheme according

to Algorithm 2. We choose the weighting matrices as

Q¼ I2R
2�2 and R¼ 1, respectively. As discussed in

Remark 4.3, Problem 4 is a convex optimisation

problem since the input and state constraint sets are

convex. To solve the problem, we used CVX,

a package for specifying and solving convex

optimisation problem (Grant and Boyd 2008, 2009).
Figure 4 shows the state and input trajectory for the
system starting from the initial state x0¼ [1 1]T, and the
optimal performance of Problem 4. For the example
system, it is observed that the proposed method
achieves good performance as well as constraints
satisfaction.

We emphasise that there is no feasible solution to
the example if the algorithms proposed in Kothare
et al. (1996) and Lu and Arkun (2000) are used, where
only symmetric box constraints are considered. If we
use these approaches to deal with asymmetric con-
straints, tighter constraints have to be chosen which
leads to a smaller feasible set.

6. Summary

In this article, we considered MPC of LPV systems
where the time-varying parameter can be measured in
real-time and exploited for feedback. We emphasise
here that LPV systems are a class of uncertain and
time-varying linear systems since the system dynamic
at the current time is known and the future system
dynamics vary in a pre-specified set. We first presented
a closed-loop MPC scheme of constrained LPV
systems with symmetric box constraints. The proposed
method is based on a parameter-dependent control law
which is obtained via the repeated solution of a semi-
definite program with respect to LIMs. Closed-loop
stability is guaranteed by the feasibility of the LMIs at
the initial time instant. Compared with existing
algorithms with a static linear control law, the
proposed scheme reduces conservativeness and
improves performance.

We further proposed an MPC scheme of LPV
systems subject to possibly asymmetric constraints,
which adopted the analogous framework of a terminal
control law, a terminal set and a terminal penalty
function of quasi-infinite horizon nonlinear MPC. The
optimisation problem was formulated as a convex
optimisation problem. It has been shown that recursive
feasibility and closed-loop stability are guaranteed by
the feasibility of the convex optimisation problem at
the initial time instant. For LPV systems with
symmetric box constraints, we reduced the convex
optimisation problem to a semi-definite program.
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Appendix

Proof of Theorem 1: The proof is divided into three parts in
order to show separately that the properties (1)–(3) hold.

(1) Multiplying (10c) from left and right with
diagfX�1k , I, I, Ig and substituting Pk ¼ �kX

�1
k ,

Kj,k ¼ Yj,kX
�1
k , we obtain that

��1k Pk � � �

Aclð�kþvjkÞ �kP
�1
k � �

Q
1
2 0 �kI �

R
1
2Kð�kþvjkÞ 0 0 �kI

2
66664

3
77775 � 0

holds for all �kþvjk2P, v2Z[0,1). By the Schur complement,
this is equivalent to

AT
clð�kþvjkÞPkAclð�kþvjkÞ � Pk þQþ Kð�kþvjkÞ

TRKð�kþvjkÞ � 0:

ð25Þ
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Multiplying (25) from both sides with xTkþvjk and xkþvjk,
respectively, plugging into the system dynamics (1) and
using (11), it follows that the inequality

xTkþvþ1jkPkxkþvþ1jk � xTkþvjkPkxkþvjk

þ xTkþvjkQxkþvjk þ uTkþvjkRukþvjk � 0 ð26Þ

is satisfied for all v2Z[0,1). Since Q> 0 and R> 0, clearly
Vkþvjk ¼ xTkþvjkPkxkþvjk is a Lyapunov function and therefore
the predicted states xkþvjk converge to zero as v!1.

(2) Since limv!1xkþvjk¼ 0, by summing up (26) from
v¼ 0 to v¼1, we obtain

xTkjkPkxkjk �
X1
v¼0

xTkþvjkQxkþvjk þ uTkþvjkRukþvjk

n o
: ð27Þ

Since this inequality is satisfied for all �kþvjk2P, v2Z[0,1),
with xkjk¼ xk it follows that

Vk ¼ xTkPkxk � J1jkðxkÞ:

Thus, Vk is an upper bound on the cost functional (6) at the
sampling instant k. Applying the Schur complement to (10b)
and substituting Pk ¼ �kX

�1
k , we conclude that

xTkPkxk ¼ Vk � �k ð28Þ

holds. Thus, minimising �k implies the minimisation of Vk

(see also Kothare et al. (1996) for details).
(3) The predicted states and inputs satisfy

constraints (3) if

xTkþvjkC
T
clð�kþvjkÞeme

T
mCclð�kþvjkÞxkþvjk � y2m,max, m 2 Z½1,ny �,

ð29Þ

holds for all �kþvjk2P and all v2Z[0,1). It follows from (26)
and (28) that

xTkþvjkPkxkþvjk � �k, 8v 2 Z½0,1Þ: ð30Þ

Thus, inequality (29) is satisfied if

xTkþvjkC
T
clð�kþvjkÞeme

T
mCclð�kþvjkÞxkþvjk

y2m,max

�
xTkþvjkPkxkþvjk

�k
� 0

ð31Þ

holds, which is clearly the case if

Pk

�k
�
CT

clð�kþvjkÞeme
T
kCclð�kþvjkÞ

y2m,max

� 0, m 2 Z½1,nz �, ð32Þ

holds for all �kþvjk2P and all v2Z[0,1). Using the definition
of Ccl(�kþvjk), with standard modifications we obtain (10d).
Thus, satisfaction of the matrix inequalities (10d) implies
that (29) holds, and therefore, the constraints (3) are satisfied
for all v2Z[0,1).

Proof of Theorem 2: The proof is divided into four parts in
order to show separately that the properties (1)–(4) hold.

(1) It is trivial to show that Problem 3 is convex since
the conditions (15b)–(15h) are LMI conditions. By applying
Lemma 1 to the LMIs (15c)–(15h) it can be shown that the
solution to Problem 3 at the sampling instant k is a feasible
solution to Problem 2. Thus, it follows from (26) that

xTkþ1jkPkxkþ1jk 5xTkjkPkxkjk ð33Þ

is satisfied for all k. The first part of the input sequence
ukþvjk¼K(�kþvjk)xkþvjk, v2Z[0,1), obtained at the sampling
instant k is applied to the system, i.e. uk¼
K(�k)xk¼K(�kjk)xkjk¼ ukjk. Furthermore, no model plant
mismatch is present, i.e. xkþ1jk¼ xkþ1. Thus, it follows
from (33) that

xTkþ1Pkxkþ1 5 xTkPkxk ð34Þ

holds for all k. This implies that the solution to Problem 3 at
the sampling instant k satisfies the LMIs (15b)–(15h) at the
sampling instant kþ 1, and therefore is a feasible solution to
Problem 3 at the sampling instant kþ 1. It follows by
induction that initial feasibility implies feasibility at all future
sampling instants.

(2) This property follows directly from the proof of
Theorem 1.

(3) It follows that the feedback law K(�k) and the matrix
Pk can be calculated at each sampling instant k if Problem 3
is feasible at the first sampling instant. Thus, the expression
Vkþ1 ¼ xTkþ1Pkþ1xkþ1 is minimised at the sampling instant
kþ 1. Since Pk is a feasible, however suboptimal solution to
Problem 3 at kþ 1, with (34) it follows that

xTkþ1Pkþ1xkþ1 � xTkþ1Pkxkþ1 5xTkPkxk

holds for all k. Clearly, Vk ¼ xTkPkxk is a candidate
Lyapunov function and continuous at the origin. Thus, the
system (1) is asymptotically stabilised by the control law (16)
(Mayne et al. 2000; Rawlings and Mayne 2009).

(4) It follows from the proof of Theorem 1 that at each
sampling instant k the predicted state and input trajectories
xkþvjk and ukþvjk satisfy constraints (3) for all v2Z[0,1). Since
uk¼ ukjk and xkþ1jk¼ xkþ1, this clearly implies satisfaction of
constraints (3) for all k.

Proof of Lemma 2: Summing up the inequality (18) from
i¼ 1 to 1, yields

Eðx1=kÞ � Eðxkþ1=kÞ

� � max
�kþi2P

X1
i¼1

xTkþi=kQxkþi=k þ �ðxkþi=kÞ
TR�ðxkþi=kÞ

n o
:

ð35Þ

Since Q> 0 and R> 0, it follows from (18) that

Eðxkþiþ1=kÞ � Eðxkþi=kÞ � �
minðQÞkxkþi=kk
2, 8i 2 Z½0,1Þ,

ð36Þ

where 
min(Q) is the smallest eigenvalue of the positive
matrix Q. Thus, E(�) is monotonically decreasing.

Since E(x)� 0 for any x2X f and E(�) is monotonically
decreasing, there exists a scalar C� 0 such that
limi!1E(xkþi/k)¼C. Then, for any �> 0, there exists a
N2Z[0,1) such that for all i�N, jEðxkþi=kÞ � Cj � �

2.
Consider any adjacent states in the sequence while i�N,

jEðxkþi=kÞ � Eðxkþiþ1=kÞj ¼ jEðxkþi=kÞ � C� Eðxkþiþ1=kÞ þ Cj

� jEðxkþi=kÞ � Cj þ jEðxkþiþ1=k � Cj

¼ �:

Together with (36), we have


minðQÞkxkþi=kk
2 � Eðxkþi=kÞ � Eðxkþiþ1=kÞ � �, 8i 2 Z½N,1Þ:

That is, limi!1xkþi/k¼ 0. Since E(x)¼ xTPx,
limi!1E(xkþi/k)¼ 0. Plugging this into (35) proves the
lemma.
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Proof of Theorem 3: In what follows, u�k and J0kðxk=kÞ denote
the optimal solution and the optimal cost functional of
Problem 4 solved at the sampling time instant k. x�kþ1=k
denotes the optimal predicted evolution of the system at the
time instant k, that is, x�kþ1=k ¼ Að�kÞxk=k þ Bð�kÞu

�
k=k.

(1) By assumption, there are no disturbances and model
mismatch, therefore the state measurement at time kþ 1 is
xkþ1 ¼ x�kþ1=k. In virtue of Problem 4, x�kþ1=k 2 X f, i.e.
xkþ12X f. It follows from Definition 1 that ukþ1¼�(xkþ1)
is a feasible solution to Problem 4 at time instant kþ 1 for all
xkþ12X f.

(2) Considering the feasible solution obtained at the
time instant kþ 1, we have

Jkþ1ðxkþ1=kþ1Þ

¼ xTkþ1=kþ1Qxkþ1=kþ1 þ uTkþ1=kþ1Rukþ1=kþ1

þ xTkþ2=kþ1Pxkþ2=kþ1

¼ J0kðxk=kÞ � xTk=kQxk=k � uTk=kRuk=k þ xTkþ2=kþ1Pxkþ2=kþ1

� xTkþ1Pxkþ1 þ xTkþ1Qxkþ1 þ �
Tðxkþ1ÞR�ðxkþ1Þ,

with xkþ1/k¼ xkþ1/kþ1¼ xkþ1 and ukþ1/kþ1¼�(xkþ1). In
virtue of (18), this implies that

J0kþ1ðxkþ1Þ � Jkþ1ðxkþ1=kþ1Þ � J0kðxk=kÞ � xTkQxk � u�Tk Ru�k:

ð37Þ

Due to Q> 0 and R> 0, and the nonincreasing evolution of
the optimal cost functional, we infer that limk!1x(k)¼ 0.
Furthermore, x¼ 0 is asymptotically stable due to the
continuity of the optimal value functional J0k in x at 0 (see
also Mayne et al. (2000) and Rawlings and Mayne (2009)).

Simple proof of Lemma 4: The inequalities (15c)–(15h)
guarantee that the LPV system (1) satisfies inequality (18)
and constraints (3), respectively.

Simple proof of Theorem 6: Let f��, u�k,X
�,Y�1,Y

�
2, . . . ,Y�Ng

denote the solution of Problem 5, associated with the minimum
cost ��, at the time instant k. We know from Theorem 3 that
f��,K�kxkþ1=k,X

�,Y�1, Y
�
2, . . . ,Y�Ng is a feasible solution for the

state xkþ1 at the time instant kþ 1, where K�k ¼ �N
i¼1�i,k

Y�i ðX
�Þ
�1. The proof of asymptotic stability and constraints

satisfaction can be completed along the lines of the proof of
Theorem 3.
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